# References

Adair, G. (1984). The hawthorne effect: A reconsideration of the methodological artifact.

*Journal of Applied Psychology*,*69*, 334–345.
Agresti, A. (1996).

*An introduction to categorical data analysis*. Wiley.
Agresti, A. (2002).

*Categorical data analysis*(2nd ed.). Wiley.
Anscombe, F. J. (1973). Graphs in statistical analysis.

*American Statistician*,*27*, 17–21.
Bickel, P. J., Hammel, E. A., & O’Connell, J. W. (1975). Sex bias in graduate admissions: Data from Berkeley.

*Science*,*187*, 398–404.
Box, J. F. (1987). Guinness, gosset, fisher, and small samples.

*Statistical Science*,*2*, 45–52.
Brown, M. B., & Forsythe, A. B. (1974). Robust tests for equality of variances.

*Journal of the American Statistical Association*,*69*, 364–367.
Campbell, D. T., & Stanley, J. C. (1963).

*Experimental and quasi-experimental designs for research*. Houghton Mifflin.
Cohen, J. (1988).

*Statistical power analysis for the behavioral sciences*(2nd ed.). Lawrence Erlbaum.
Cramér, H. (1946).

*Mathematical methods of statistics*. Princeton University Press.
Ellis, P. D. (2010).

*The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results*. Cambridge University Press.
Evans, J. St. B. T., Barston, J. L., & Pollard, P. (1983). On the conflict between logic and belief in syllogistic reasoning.

*Memory and Cognition*,*11*, 295–306.
Fisher, R. A. (1922a). On the interpretation of \(\chi^2\) from contingency tables, and the calculation of \(p\).

*Journal of the Royal Statistical Society*,*84*, 87–94.
Fisher, R. A. (1922b). On the mathematical foundation of theoretical statistics.

*Philosophical Transactions of the Royal Society A*,*222*, 309–368.
Fisher, R. A. (1925).

*Statistical methods for research workers*. Oliver; Boyd.
Fox, J., & Weisberg, S. (2011).

*An R companion to applied regression*(2nd ed.). Sage.
Gelman, A., & Stern, H. (2006). The difference between “significant” and “not significant” is not itself statistically significant.

*The American Statistician*,*60*, 328–331.
Hays, W. L. (1994).

*Statistics*(5th ed.). Harcourt Brace.
Hogg, R. V., McKean, J. V., & Craig, A. T. (2005).

*Introduction to mathematical statistics*(6th ed.). Pearson.
Hothersall, D. (2004).

*History of psychology*. McGraw-Hill.
Hsu, J. C. (1996).

*Multiple comparisons: Theory and methods*. Chapman; Hall.
Ioannidis, J. P. A. (2005). Why most published research findings are false.

*PLoS Med*,*2*(8), 697–701.
Jeffreys, H. (1961).

*The theory of probability*(3rd ed.). Oxford.
Johnson, V. E. (2013). Revised standards for statistical evidence.

*Proceedings of the National Academy of Sciences*,*48*, 19313–19317.
Kahneman, D., & Tversky, A. (1973). On the psychology of prediction.

*Psychological Review*,*80*, 237–251.
Kass, R. E., & Raftery, A. E. (1995). Bayes factors.

*Journal of the American Statistical Association*,*90*, 773–795.
Keynes, J. M. (1923).

*A tract on monetary reform*. Macmillan; Company.
Krajcsi, A. (2021).

*Advancing best practices in data analysis with automatic and optimized output data analysis software*[Preprint]. PsyArXiv. https://doi.org/10.31234/osf.io/hnmsq
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis.

*Journal of the American Statistical Association*,*47*, 583–621.
Kühberger, A., Fritz, A., & Scherndl, T. (2014). Publication bias in psychology: A diagnosis based on the correlation between effect size and sample size.

*Public Library of Science One*,*9*, 1–8.
Larntz, K. (1978). Small-sample comparisons of exact levels for chi-squared goodness-of-fit statistics.

*Journal of the American Statistical Association*,*73*, 253–263.
Lehmann, E. L. (2011).

*Fisher, Neyman, and the creation of classical statistics*. Springer.
Levene, H. (1960). Robust tests for equality of variances. In I. O. et al (Ed.),

*Contributions to probability and statistics: Essays in honor of harold hotelling*(pp. 278–292). Stanford University Press.
Lyon, J. D., & Tsai, C.-L. (1996). A comparison of tests for heteroscedasticity.

*Journal of the Royal Statistical Society: Series D (The Statistician)*,*45*(3), 337–349.
McGrath, R. E., & Meyer, G. J. (2006). When effect sizes disagree: The case of \(r\) and \(d\).

*Psychological Methods*,*11*, 386–401.
McNemar, Q. (1947). Note on the sampling error of the difference between correlated proportions or percentages.

*Psychometrika*,*12*, 153–157.
Meehl, P. H. (1967). Theory testing in psychology and physics: A methodological paradox.

*Philosophy of Science*,*34*, 103–115.
Merriam-Webster. (2022).

*Petrichor, cromulent, and other words the internet loves*. https://www.merriam-webster.com/words-at-play/internets-favorite-words
Open Science Collaboration. (2015). Estimating the reproducibility of psychological science.

*Science*,*349*(6251), aac4716. https://doi.org/10.1126/science.aac4716
Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.

*Philosophical Magazine*,*50*, 157–175.
Pfungst, O. (1911).

*Clever hans (the horse of mr. Von osten): A contribution to experimental animal and human psychology*(C. L. Rahn, Trans.). Henry Holt.
Rosenthal, R. (1966).

*Experimenter effects in behavioral research*. Appleton.
Sahai, H., & Ageel, M. I. (2000).

*The analysis of variance: Fixed, random and mixed models*. Birkhauser.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples).

*Biometrika*,*52*, 591–611.
Stevens, S. S. (1946). On the theory of scales of measurement.

*Science*,*103*, 677–680.
Stigler, S. M. (1986).

*The history of statistics*. Harvard University Press.
Student, A. (1908). The probable error of a mean.

*Biometrika*,*6*, 1–2.
Welch, B. L. (1947). The generalization of “Student’s” problem when several different population variances are involved.

*Biometrika*,*34*, 28–35.
Yates, F. (1934). Contingency tables involving small numbers and the \(\chi^2\) test.

*Supplement to the Journal of the Royal Statistical Society*,*1*, 217–235.